
An Adaptive Method for the Numerical Solution of Volterra

Integral Equations

JOSHUA H. GORDIS
Department of Mechanical Engineering

Naval Postgraduate School
Code ME/Go

Monterey, CA 93943
U.S.A.

BENY NETA
Department of Mathematics
Naval Postgraduate School

Code MA/Nd
Monterey, CA 93943

U.S.A.
bneta@nps.navy.mil http://www.math.nps.navy.mil/ bneta

Abstract

In this paper we introduce an adaptive method
for the solution of Volterra integral equations of
the second kind. We demonstrate the bene�t of
adaptivity and apply the idea to the nonlinear
equation arises in transient structural synthe-
sis.
Keywords: Volterra integral equations,

adaptive, earthquake.

1 Introduction

In this paper we extend our work on the adap-
tive solution of Fredholm integral equations of
the second kind [1, 2] to Volterra type integral
equations. In [1] , Neta and Nelson have dis-
cussed the adaptive solution of

x(t) =

Z 1

0

k(t; � )x(� ) d� + g(t); t� [0; 1];

(1)
where k(t; � ) is a regular kernel. The method is
based on the trapezoidal rule for obtaining the
numerical solution of (1). The idea is to start
with a given number of equally spaced points
(or a given mesh). The solution at this stage
is obtained by solving a linear system of alge-
braic equations. The program then decides if
the mesh needs to be re�ned and where. This
is done in such a way that both the change

in the approximate solution and its gradient
are equidistributed. Based upon the experi-
ence described by Dwyer, Smooke and Kee [3]
for boundary-value problems, one perhaps can
expect this often to be more e�cient than the
alternative of equidistributing arc-length or lo-
cal truncation error.
This idea was extended to singular kernels.

Neta [2] considered the two most common types
of singularities

i. k(t; � ) = R(t; � ) log j t� � j ; (2)

ii. k(t; � ) = R(t; � ) j t� � j�� ; � < 1; (3)

where R(t; � ) is non singular. The adaptive
method is based on a product integration rule
(see Atkinson [5] ) for obtaining the numerical
solution of (1) with kernel (2) or (3).

2 Solution of Volterra

Equations

Volterra integral equations, given by

x(t) =

Z t

0

k(t; � )x(� ) d� + g(t); t� [0; 1];

(4)



are slightly di�erent. Here the upper limit of
the integral term is not a constant. This dif-
ference manifests itself in the numerical ap-
proximation. In the case of Fredholm inte-
gral equations of the second kind, the coe�-
cient matrix is dense. For Volterra integral
equations the matrix becomes lower triangu-
lar. In fact, in the case of convolution kernels,
i.e. k(s; t) = k(s� t), the matrix is called semi-
circulant. This means that the system can be
solved directly without the need to factor. In
fact, this means that one doesn't even have to
write a system of equations, but solve the prob-
lem by marching in time. The approximation
of (4) is given by

xj =

j�1X
i=0

Z ti+1

ti

k(tj ; � )x(� )d� + gj (5)

Using the trapezoidal rule,

xj =

j�1X
i=0

1

2
hi+1 (kj i+1xi+1 + kj ixi)

+ gj ; j = 1; 2; : : : ; N
(6)

xj =

j�1X
i=0

1

2
hi+1kj ixi +

jX
i=1

1

2
hikj ixi

+ gj; j = 1; 2; : : :; N
(7)

xj

�
1�

1

2
hjkj j

�

=

j�1X
i=0

1

2
(hi+1 + hi) kj ixi + gj;

j = 1; 2; : : : ; N

(8)

with the understanding that h0 = 0: Clearly
from (4), the value of x(0) is g(0), so

x0 = g0 (9)

In general

xj

�
1�

1

2
hjkj j

�
=

1

2

j�1X
i=0

(hi+1 + hi) kj ixi+ gj

(10)
The sum on the right have values of xi already
computed, since i � j � 1.
This is, of course, not the only way to ap-

proximate Volterra integral equations. See, for

example, the excellent book by Peter Linz [7]
and references there. Westreich and Cahlon [6]
have analyzed �ve di�erent methods for the nu-
merical solution of nonlinear Volterra integral
equations of the form

x(t) =

Z t

a

k(t; � )h(t; �; x(� ))d�+g(t); a � t � b

(11)
One of the two methods recommended is based
on piecewise quadratic polynomial interpola-
tion of h(t; �; x(� )) for all points except the �rst
where we must use a linear interpolation.

3 Adaptive Solution

The adaptive solution method for Fredholm
integral equations can be applied to Volterra
type. The di�erence is that we have a lower
triangular matrix to solve at each stage. This
is cheaper since there is no need for factoriza-
tion.

Since the solution of the problem is done by
marching in time (similar to initial value prob-
lems), it makes more sense to use variable step
instead of adaptivity suggested above. We ap-
proximate the solution at time t by using a time
step to ensure that the local error is not to ex-
ceed a given tolerance. In order to implement
variable step, we need to have a strategy for
step doubling and step halving. This will de-
pend on the local truncation error. Thus it is
necessary to estimate the local truncation er-
ror from a knowledge of the numerical solution,
and use this information to control the step size
(see Gear [8]). We measure the error by the
absolute di�erence between the coarse and �ne
solutions at the current point.

It is suggested that the errors be computed
and divided by the maximum value of x(t) so
far. The worst case scaled error is restricted to
be less than a given tolerance. In fact it is ad-
vised to take 99% of that, so that one wouldn't
have to change the step very often.

To compute x
f
j , we only subdivide the last



interval. Thus

x
f
j =

j�2X
i=0

Z ti+1

ti

k(tj � � )x(� )d�

+

Z tj�1=2

tj�1

k(tj � � )x(� )d�

+

Z tj

tj�1=2

k(tj � � )x(� )d� + gj

(12)
Using the trapezoidal rule,

x
f
j =

j�2X
i=0

1

2
(kj i+1xi+1 + kj ixi)hi+1

+
1

2

�
kj j�1=2xj�1=2+ kj j�1xj�1

� 1
2
hj

+
1

2

�
kj jxj + kj j�1=2xj�1=2

� 1
2
hj + gj

(13)

x
f
j =

j�2X
i=0

1

2
hi+1kj ixi +

j�1X
i=1

1

2
hikj ixi

+
1

2

�
kj j�1xj�1 + 2kj j�1=2xj�1=2

+ kj jxj)
1

2
hj + gj

(14)

x
f
j

�
1�

1

4
hjkj j

�
=

j�2X
i=0

1

2
(hi + hi+1) kj ixi

+
1

4
(hj + 2hj�1) kj j�1xj�1

+
1

2
hjkj j�1=2xj�1=2 + gj

(15)
The problem is the value of xj�1=2:This is done
in the same fashion.

xj�1=2 =

j�2X
i=0

Z ti+1

ti

k(tj�1=2 � � )x(� )d�

+

Z tj�1=2

tj�1

k(tj�1=2 � � )x(� )d�

+ gj�1=2
(16)

Using the trapezoidal rule,

xj�1=2 =

j�2X
i=0

1

2

�
kj�1=2 i+1xi+1 + kj�1=2 ixi

�
hi+1

+
1

2

�
kj�1=2 j�1=2xj�1=2 + kj�1=2 j�1xj�1

� 1
2
hj

+ gj�1=2
(17)

xj�1=2 =

j�2X
i=0

1

2
hi+1kj�1=2 ixi

+

j�1X
i=1

1

2
hikj�1=2 ixi

+
1

4

�
kj�1=2 j�1xj�1 + kj�1=2 j�1=2xj�1=2

�
hj

+ gj�1=2
(18)

xj�1=2

�
1�

1

4
hjkj�1=2 j�1=2

�

=

j�2X
i=0

1

2
(hi + hi+1) kj�1=2 ixi

+
1

2

�
1

2
hj + hj�1

�
kj�1=2 j�1xj�1

+ gj�1=2

(19)

The procedure is then to evaluate xcj from (10),

then substitute (19) into (15) to get xfj .

Algorithm:

� Initialize

{ Set t0 = 0, choose �t

{ Set error tolerance and minimum
time step

{ Compute g(t0) and x(t0) = g(t0)

� First time step

{ Evaluate coarse solution at t0 + �t

using (10)

{ Evaluate �ne solution using half the
time step using (15)



� Compare the coarse and �ne solutions

While the error greater than the tolerance
and �t greater than some minimum value
we re�ne

� Save results

� Next time step

Here we loop

{ Get coarse solution using (10),

{ Get �ne solution using (15) and (19).

{ If error is less than tolerance double
the time step and recompute coarse
and �ne solutions

{ If error is greater than tolerance and
time step larger than a minimumstep
re�ne

{ Save results

� Plot numerical and analytic solutions

4 Nonlinear Equations

The Nonlinear Volterra equation considered
her is

x(t) =

Z t

0

k(t; � )f(t; �; x(� ); _x(� ))d� + g(t)

(20)
A discussion of this and more general nonlin-
ear equations can be for example in [6]. They
consider the convergence and compare several
numerical schemes. Our interest lie in the
transient structural synthesis, so the kernel is
k(t � � ) with k(0) = 0: To get the coarse solu-
tion we have to solve

xj =
1

2

j�1X
i=0

(hi+1+hi)kj�ifji(xi; _xi)+gj (21)

where fji(xi; _xi) = f(tj ; ti; xi; _xi) Notice that
even though the problem is nonlinear we don't
have to solve a nonlinear equation at each step
since k(0) = 0.

For the �ne solution, we need the interme-
diate value of xj�1=2. We can generalize (19)
and (15). We now get

x
f
j =

j�2X
i=0

1

2
(hi + hi+1) kj�ifji(xi; _xi)

+
1

4
(hj + 2hj�1) k1fj j�1(xj�1; _xj�1)

+
1

2
hjk1=2fj j�1=2(xj�1=2; _xj�1=2) + gj

(22)
xj�1=2

=

j�2X
i=0

1

2
(hi + hi+1) kj�1=2�ifj�1=2 i(xi; _xi)

+
1

2

�
1

2
hj + hj�1

�
k1=2fj�1=2 j�1(xj�1; _xj�1)

+ gj�1=2
(23)

5 Numerical Experiments

In this section we describe some of the numeri-
cal experiments performed in solving the linear
Volerra integral equation. In all cases, we chose
the right hand side g(t) in such a way that we
know the exact solution. This exact solution is
used only to show that the numerical solution
obtained with our method is correct.

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1: Numerical and Analytic Solutions for
Example 1

The �rst example has an exact solution
x(t) = e�t and kernel k(t) = e�t: It can be



1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

5

10

15

20

25

30

Figure 2: Step Sizes for Example 1

shown that in that case g(t) = e�t (1 � t). We
ran our code with error tolerance of 10�4 for
0 < t < 50. Since the solution decays exponen-
tially, we found that the step size was doubled
at every step, see Figure 2. As can be seen in
Figure 1 the numerical and analytic solutions
are identical.
The second example has a quadratic polyno-

mial solution x(t) = t2 + 2t + 1 and the same
decaying exponential kernel. The right hand
side is then g(t) = e�t + 2t. This problem is
slightly more complicated, but the solution is
very accurate, as can be seen in Figure 3. No-
tice that the step size was doubled once at t = 1
(see Figure 4.)

0 2 4 6 8 10 12
0

20

40

60

80

100

120

140

Figure 3: Numerical and Analytic Solutions for
Example 2

In the next example, we took the same ker-
nel, but x(t) = cos t. Thus the problem has

0 100 200 300 400 500 600
0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

Figure 4: Step Sizes for Example 2

g(t) =
1

2

�
cos t� sin t+ e�t

�
. In this example

the agreement is excellent (see Figure 5) for all
t (we ran the problem for t � 10:) It is inter-
esting to see that the code manages to double
the step in cases and halve the step for other t,
see Figure 6. The smallest step size is 0.01 and
the largest is 0.08.

0 2 4 6 8 10 12
−1.5

−1

−0.5

0

0.5

1

Figure 5: Numerical and Analytic Solutions for
Example 3

In our fourth example we changed the ker-
nel from a decaying exponential to a bounded
trigonometric function. We have k(t) = sin t
and the exact solution x(t) = t + 1. The right
hand side is then g(t) = sin t+ cos t. The solu-
tion agrees very well with the analytic.
In the last example we allowed the kernel to

grow linearly, i.e. k(t) = t. We chose x(t) =
cos t, which means that the right hand side is
g(t) = 2 cos t � 1. Here the numerical solution



0 2 4 6 8 10 12
−1.5

−1

−0.5

0

0.5

1

Figure 6: Step Sizes for Example 3 (Min �t =
:01 and Max �t = :08)

0 2 4 6 8 10 12
−1

−0.5

0

0.5

1

1.5

Figure 7: Numerical and Analytic Solutions for
Example 5. Notice the divergence of the two
curves around t = 9:

was able to follow the analytic solution in the
beginning, but later they diverge (see Figure
7). When taking error tolerance of 10�5, the
agreement was good for t slightly greater than
8. If we reduce the error tolerance to 10�4,
then the solutions diverge at t slightly smaller
than 6. An increase in the error tolerance cut
the execution time by a factor of 15.

6 Conclusions

An adaptive method was developed and tested
for the numerical solution of Volterra integral
equations of the second kind. The applica-
tion to a nonlinear Volterra equation arising

in earthquake hazards mitigation is discussed.

Acknowledgement

The authors gratefully acknowledge the sup-
port of the National Science Foundation, Dr.
S. C. Liu, Program Director, Earthquake Haz-
ard Mitigation.

References

[1] B. Neta and P. Nelson, Adaptive method
for the numerical solution of Fredholm in-
tegral equations of the second kind. Part I:
Regular kernels, Applied Mathematics and

Computation, 21, (1987), 171-184.

[2] B. Neta, Adaptive method for the numeri-
cal solution of Fredholm integral equations
of the second kind. Part II: singular kernel,
in Numerical Solution of Singular Integral

Equations (A. Gerasoulis and R. Vichn-
evetsky, Eds.), 1984, pp. 68-72.

[3] H. A. Dwyer, M. D. Smooke, and R. J.
Kee, Adaptive gridding for �nite di�er-
ence solutions to heat and mass transfer
problems, Appl. Math. Comput., 10/11,
(1982), 339-356.

[4] C. E. Pearson, A numerical method for or-
dinary di�erential equations of boundary-
layer type, J. Math. Phys, 47, (1968), 134-
154.

[5] K. E. Atkinson, A Survey of Numeri-
cal Methods for the Solution of Fredholm
Integral Equations of the Second Kind,
SIAM, Philadelphia, 1976.

[6] D. Westreich, and B. Cahlon, Numeri-
cal solution of Volterra integral equations
with continuous or discontinuous terms, J.
Inst. Maths Applics, 26, (1980), 175-186.

[7] P. Linz, Analytical and Numerical Meth-
ods for Volterra Integral Equations,
SIAM, Philadelphia, 1985.

[8] C. W. Gear, Numerical Initial Value Prob-
lems in Ordinary Di�erential Equations,
Prentice-Hall, Englewood Cli�s, NJ, 1971.


